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Existence and Uniqueness of Periodic Solutions
for a Prescribed Mean Curvature p- Laplacian
Equation with a Deviating Argument
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Abstract: This paper is concerned with the prescribed mean curvature p- Laplacian equation with a
deviating argument. By employing Mawhin’s coincidence degree theorem and the analysis techniques,
some new results on the existence and uniqueness of periodic solutions are obtained. A numerical
example demonstrates the validity of the method and the numerical solution diagram is drawn out by
MATLAB.
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Introduction

In the past few decades, prescribed mean curvature equations and its modified forms which derived from
differential geometry and physics have been drawing considerable attention (seet' ). Then, more and more

scholars to study the periodic solutions for prescribed mean curvature equation and its modified forms

7*10}) 7]

(seet . For example, Feng in'’" studied the periodic solutions for nonlinear prescribed mean curvature

Liénard equations with deviating argument as follows:
( X ’ ( t )
V14 (27 (1))

where 7,e € (R,R) are T- periodic, and g € C(R X R,R) are T- periodic in the fist argument, T > 0 is a

) + fx ()’ (¢) + g(t,a(t —2(2))) = e(2),

constant. Then, Li in'® discussed a delay prescribed mean curvature Rayleigh equation of the form
( x' (1)
V1+ (2 (1))

where 7,¢ € (R,R) are T- periodic, and f,g € C(R X R,R) are T- periodic in the fist argument, T > 0 is

a constant.

) o+ [, () + g(e,x(e = (1)) = e(r),

Recently, by using Mawhin’s continuation theorem, Li in'®’ studied the existence of periodic solutions for a

prescribed mean curvature Liénard p- Laplacian equation with two delays as follows:

' (¢t) , . ,
(o, (—————)) (x(t))x"(2) (x(t = z(2))) + h(x(t —7(2))) = e(2).
o ) + f ¢ t) +g t— (¢t + r— y(t e(t

[10]

Meanwhile, wang in'""’ studied the following prescribed mean curvature Rayleigh equation:
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(1) , . ,
op(———=)] (t,2(e)) + g(t,2(t = 2(2))) = e(t),t € [0,0],
J @, () + (¢ t)) + g(t t —t(t e(t),t (1)

11(0) = 2(w),2'(0) = 2 (w),

under the assumptions:

ft,x2)=al x1",¥Y(t,2) € R?,

g(t,z) —e(t) =—m; lxz|—m,y, Yt € R,x =>=d,
where a,r =1, m and m, are positive constants. Through the transformation, (1) is equivalent to the system
2 (1) = @, (x2(2)) ’
V1= gi(ay(1))

@, (25(2))

V1= gi(ay(t))
21(0) = 2(w),2,(0) = 22(w).

By using Mawhin’s continuation theorem and given some sufficient conditions, the authors obtained that (2)

(2)

x5 (t) == f(z, ) = g(t,a(e — (1)) +e(2),

has at least one periodic solution. However, we found that the function ¢,(x,(z)) must satisfy max |
(€00, T

@,(x,(2))) I <1. That is to say the open and bounded set £ of Mawhin’s continuation theorem must satisfy {2
ClHxp,x)T€Xilx log<d, |l a1y < o < 1}. But in''? ) there is no proof the conditions and a similar
problem also occurred in'*’.

In order to solve this problem, by using coincidence degree theory and some analysis methods, we study the

existence of periodic solutions for prescribed mean curvature p- Laplacian equation with a deviating argument as

follows:
(g (—2) 3y R () 1 Glale — (1)) = (1), (3)
V1412 () 1? dt

where p € (1, + OO),gap:R" —>R",gop(x) = (| x, \pile, | 2, |p—212"”, | x, \p72x,,), forx #0 = (0,
0,0), FE€ C*(R",R),G € C(R",R"), e € C(R,R"),e(t)=e(t+T),r € C(R,R) tis T- period and
T > 0is given constant. The existence and uniqueness of periodic solutions to (3) is obtained by using Mawhin’
s continuation theorem. The interest is that the approaches to estimate a priori bounds of periodic solutions are

10

different from the corresponding ones oft® and"% . At last, a numerical example demonstrates the validity of the

method.

1 Preliminary

Lemma 1''") Let L be a Fredholm operator of index zero and let N be L- compact on 2. Suppose that the
following conditions are satisfied:

(al) Lz # ANz, ¥V (x,4) € 902 x (0,1);

(a2) QNv & ImL,¥Yx € KerL ) 90

(a3) deg 1 JAN,Q N KerL ,0} 40, where Q : Z— Z is a projection with ImL = KerQ, J: ImQ — KerL
is an isomorphism with J(8) = 0, where 8 is the zero element of Z.

Then Lx = Nx has at least one solution in D(L) ) 2.

Lemma 220 Let 0 < a << T be constant, ¢ € C(R,R) be T- periodic function, and max] | () 1<

tel0,T

a. Then, Y u € C'(R,R) which is T- periodic function, we have
T T
| ) - ) Par<2a?| 0w P
0 0

Lemma 3" Ifu:R—>Ris continuously differentiable on R,a >0, > 1 and p > 1 are constants, then

for every t € R, the following inequality holds:

(o) w<<2a>v‘i<j“

L
-a —

’ I u'(s) \pds)%.

a

’ | u(s) I/‘ds),flz + a(Za)J;(J

t
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This lemma is Corollary 2.1 in'"/.
In order to use Mawhin’s continuation theorem, we should consider the following system:
, (1))
Jxm Pyl = B0,
V11, (3() |
’ d <
ly (1) == 2 VF(x(2)) = G(x(t = (1)) + e(2).
Since
I*F IF I*F
ax% (71191'2 E)Ilaxn ’
Z 1
*F I*F I*F ,
x
Lop(a()) = |92 a3 dazda, | |12
PF PF PF o
axnaxl a.Inal'z (71'%,
and define
( aziF aZF aZF
31;% dxdx, dxdx,
PF PF PF
A = |Jdx0x, dx3 dxydx,
IF PF PF
axizaxl (71'”(712 (’].ZT%I
then the above equation can be turned into
, (v (1))
[ E— = ),
3 V116, (y(2)) ] (4)
Ly/(t) =— Az (1) = G(x(t — (1)) + e(2),
where ¢,(s) =1 s |q*25,4l + L 1, y(z) = gp,,(#{) = ¢ 1(2"(¢)). Obviously, if (x(z),
p q V142 (e) 17

y(t))T is a solution of (4), then x(¢) is a solution of (3).

Throughout this paper, |.| will denote the absolute value and Euclidean norm on R". For each # € N, let

X=Y=1{o="(x(t),y(t))" € C(R,R*"),v(t) = v(t+ T)}|, where the norm va | = max{!| x Iy,

| ylot,and | o |y = max lx(e) 1, 1 yly= max | y(z) I. It is obvious that X and Y are Banach spaces.
te 0, T €0, T

- |
Furthermore, for ¢ € Cp, [l ¢ ||, = (J L o(e) 17)r,r > 1.
0

Now we define the operator
L:D(L)C X—>Y,Lo =9 = (2 (¢t),5 ()7,
where D(L) = {0 | v = (1‘(1),y(t))T € CY{R,R*),v(t) = v(t + T)}.

Let Z =f{ovlov=(2(t),y(t)TE€ CYUAR,R"XI'),v(t) = v(t+ T),where' = {x € R", | 2 I1<
1,2(z) = (¢ + T)}, define a nonlinear operator N: 2 — Y as follows:

_ o, (y(1))

V1 =1 @, (y(1)) 12’
where 2 C (X () Z) C X and 2 is an open and bounded set. Then problem (2.1) can be written as Lv = Nv
in.

We know

KerL = {vl v € X,0v = (Jfl(l‘),y/(i)),[ = (0,0)7},

Nv = Ad(y(1)) = G(x(t = (1)) + e(2))",
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then x'(t) = 0,y"(¢) = 0, obviously x € R", y € R", thus KerLL = R?", and it is also easy to prove that
T

ImL = {z € Y,J z(s)ds = 0}. So, L is a Fredholm operator of index zero.
0

Let

-
P:X — KerL,Pv = l[ v(s)ds,
TJ)o

T
Q:Y—> ImQ,Qz = LJ z(s)ds.
Ty
Let K, = L \}i,pm)(wf, then it is easy to see that
T
(Kpe) (1) :j G(rrs)e(s)ds,
0

where

s — T
T

J 0t s
G(t,s) = 3
{%, st < T.

For all 2 such that 2 C (X N Z) C X, we have Kp(I — Q)N () is a relative compact set of X, QN (2)

is a bounded set of Y, so the operator N is L- compact in (2.

2 Main results

Firstly, we give the following assumptions:

[H,] There exists a constant m, > 0 such that {x,G(x)) <— m,; | 2 1>, Y2 € R",and G'(x) < 0,
Vo & R".

[H,] There exists a constant / > 0 such that | G(x;) — G(x) 1<l | 23— x5 |,V x; € R",i =1,2.

[H;] There exist constants ¥ > 0, m, > 0 such that (Ax,x) =7 | = 12and | Az 1< myl x 1, Vax &€
R™.
[(Hy] (G(xy) = G(a3) 2y —22) <0,V ,20 € R", 2, 7 x,.
Theorem 1 If the conditions [H, ] — [H;] hold, and there exists ¥ > +/2al satisfying
2 2

L T leld 1 - VT el
QT)2(———————)¢ + /T2 m +2al] ———
my (7 —2al)? 1 ! 7y —2al

then the problem (4) has at least one periodic solution. Moreover, if [H,] and p = 2 hold, then the problem

+ TV12 el <1,

(4) has a unique periodic solution.

Proof LetQ, = {x € Q,Lx = ANx,¥ 2 € (0,1)|. f YA € Q,, we have

, (y(2))
2 (1) = A P = 28(5(2)),
J t VI1I-1 ¢, (3(2)) 12 o (5)

ly/(t) =—Ax"(t) = AG(x(t — z(t))) + xe(t).
Multiplying the first equation of (5) by y'(¢) and integrating from 0 to T, we have
[ e nar = [ a6 (0,8 de = [ 1 ()dy(e) = 0.

On the other hand, multiplying the two sides of the second equation of (5) by =" () and integrating them

over [0, T], we get

T T T
| Ax ()2 (dde = A] (Glate = 2()) 2" (D)de = 2] Ce(e).a ()
0 0 0

From [Hy], we get

T 7’
}’J I 2" () 1%de
0
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T
<j (Ax’ (1), 2" (6))dt

- j (G(x(t - (t)))oa'(e))dr — aj Ce(t)oa () dr
A (GG = 2(0)) = G (e = 2 Celr) ()
T

<j0 Gt = e()) = G(a(e)) 11 27 (2) | de +JUT Ce(e) 11 2 (e) | dt. (6)
Combining (6) with [H,], we have

T T T
v 1) Par <] Tt e (0) - a0 1@ et | el 1127 1 e,
0 Jo Jo
by using Hoélder’s inequality and Lemma 1 to the above inequality, we obtain

vz 13 < Z(J | a(t — (1)) — x(z) | dt)Z(J | 2'(¢) | dt)2
(e rant([ o Pan?

<V2a 2 15+ 2" lI2lels,
which implies that

% T | e |0
2", <<——=—: = d,. (7)
2 y *«/E,a[ 0
Multiplying the second equation of (5) by 2 (¢) and integrating from 0 to T, we have

T
| ey ana
T X
= -] (e0,a

g [ ). G e+ [ () el)ar],
0 0

J'T | y(2) 17
011 g, (x2(2)) I?

T T T
= | (GG = 2(0)) = Gl + | (), Gl de = | () e(o))ds
<[ 116G = () - G0 1 e

T T
[ a0, Ga@de [ 1) 11 () 1 de (8)
0 0
Combining (8) with [H; ] and [H,], we get

T T
|\y\|;’+nzl|\x|\§<lj |x(t)||x(t—r(t))—x(t)\dl+J l2(t) 11 e(t) | dt.
0 0
By using Holder’s inequality and Lemma 2 to the above inequality, we obtain

Fyld+millalls<vV2alz lolaloa+ lellslals,
which implies that

myll 2 13<V2ad Lz sl zlls+ lellslzlls,, (9)
and
[yllg<<V2allz’ ol alla+ el llxll,. (10)
So from (7), (9) and [H;], we can conclude that
yJT | e |
Iz, < = d,. (11)

ml()’—«/éal):
Thus by using Lemma 3 for t € [0, T], we get
e 1=

|T()\d9)2+T(T)2(J 1 2(s) 12ds)E

m\~ m\»sg
N\~ lv\»sj

= =
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T T
= (D) 23 () Paod TR () 123
2 2
(T sl (T N
~(T) z(J L e(s) | ds>z+Tz<j 27 (s) 12ds)3. (12)
0 0
From (7), (11) and (12), we obtain
Lo by = max | 2(e) 1= (2T) 2dy +) Ldy: = po. (13)
(€00,T) 2
From (7), (10) and (11), we obtain
Y2T lel? 1
Hqué(A) s = d,.

q
m(y — «/E al)
Multiplying the second equation of (5) by y" () and integrating from 0 to T, we have

kT
J | v/ (2) 1%dt
— kT
T T T
:—JO (Ax"(t),y (t))de —joﬂy’(t),G(x(t —7(2))))dt +J0 Ay (t),e(t))dt

:7J5<A,r’(t),y/(t)>dt *J()T/\<y’(z),((}(_r([ — () = G2 () dt

Ry | () 1? o
v 2k (2(0)), = e [ A (e ar.

From [H,], [H,] and [H;], we know that
JT | v/ (¢) 1*dt
0
.,
<J mo | 2" () 11 vy (¢) | dt
0
T T
; zj () 12— () = 2(0) | dt +j () 1 e(e) | dt
0 0
T
< mojo () 11y () | d

T T
+ IJO Ly () 1 (e — () —x(2) | dt +J0 Iy (e) Il e(e) | de.

By using Holder’s inequality, Lemma 2 and (13) to the above inequality, we obtain
Iy s mol a0y la+v2al 2" oy o+ el y s,
from (7), we can conclude that
I3 < (mg+42al)dy + VT 1 ely: = ds. (15)

In a similar way to (13), we get

1
| vy 1p = max |y(t)|<(2T)7§d2+A/Id3::pl,
(€10, 7] 2

where

1 T leld 1 VT el
= Q2T)2(———— )+ VT 2[my +V2al] ———+ T V172 | e |.
o mi(y —2al)? 1 ! 7y —2al !

Since p; < 1, we have

Ly g << pp < 1. (16)
Let G, = max | G(x) |, from (6), we have
lzl<p,
, o, (y(2)) | gt
2 (1) 1p < A %y (5(£)) <=, (17)

JT=1 g, () 12 1=l
and
Ly () g mg | 2" () 1+ G(a(t — () |+1] e(t) |
< mopy + G, +1 e ly: = p3. (18)
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Let 2, C x represent the set of all the T- periodic solutions of (5). If (.r,y)T € 0,, by using (13) and (16),
we get

| 1o << pos |y log<< pp < 1.
Let 2, = {v=(2,y)" € KerL, QNv = 0}, if (z,y)" € Q,, then (x,y)" = (a,,a,)" € R*" (constant

vector), we see that

JJI 7u(as) dr =
01 -1 g,(ay) I?
jOT[— G(ay) + e(e)lde = 0,

Jaz =0,
Uch<al>+e<z>dz:o. (19

0
Multiplying the second equation of (19) by a,, we have

Tmlal\J (aj,e(t))dt < T layllely, (20)
thus
|€|()
[ aq | H— .
: \\/—Tml P
+1
Now, if weset 2 = {v = (2, )T € X, lx g < po+ B, lylg<p’ <1},Wher€,0% = [OIT<

1, then 2 D 02, D 2,. So, condition (a;) and condition (a,) of Lemma 1 are satisfied. It remains to verify
condition (a3) of Lemma 1. In order to do this, let

H(v,#):(ﬂ N KerL) x [0,1] — R":H(v,/z) = /z(x,y)T + (1 - /z)_]QN(“U),
where J : ImQ — KerL is a linear isomorphism, J(x,y) = (y,2) . From assumption [H; ] and (20), we have

11—
T

V(v,p) €902 N KerL x [0,1].
Hence, “()TH(‘U,/A) # 0for (v,p) € 3Q (| KerL x [0,1], which implies
deg{JQN, Q2 N KerL ,0} = degi{H(v,0),0Q N KerL ,0}
degiH(v,1),0 (N KerL ,0} 0.

So condition (a3) of Lemma 1 is satisfied. Therefore, by using Lemma 1, we see that (5) has one periodic

VHCo, 0 = (07 + 3+ LT G + e, 2(0) + SRS Y

V1= ¢,(y)

solution. Hence equation (3) has at least one periodic solution in 2.

Now to prove uniqueness, assume that p =2 and [H,] holds. Let x5(¢) and x,(¢) be any two solution of
(4), and let y3(¢) = ¢ ' (2'5(¢)) and y, () = ¢ (2", ()). Also, let u(z) = x3(¢) — 24(¢) and v(z) =
y3(t) — y,(t). We will show that « () <C0, ¥V € [0,1]. Suppose there exists a z, € [0, T') such that u (¢,)
= max u(t) = x3(t9) — 24(29) > 0. Then u'(zy) = $(y3(z9)) — $(y4(z9)) = 0, which implies that

c[0,7]
y3(t0) = y,(2y) and «”(t,) < 0. But

M”(to) = ¢‘/(y3(to)) - ¢‘/(y4(to))

@, (y3(1)) y o, (v4(1))
/\/1 _‘ qu(yS(t)> |2 N/l - goq(y4(l‘)) ‘2 T
_ 9’y (33(2)) iy ¢y (va(2))
(1=1 0, (3(0) 12 (=1 g (p(e) D2 "
. ! ) = (@, (3 () — &y (va(ON T,

(1 =1 ¢, (y5(2)) 17)2
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= [(1 o 1( ))ml)*((q*l)\ys(to)|q72y’3(to)*(q*1)\y4(to)|"72y/4(to))
— 1 o, (y3lLy 2
— R q-2
= (o =1) 1 33to) | 3(3//3(&)) = 3'4(29))
(1 -1 §Oq(y3(t0)) 12)2
_ (g — 1) | y3(z) 1777 o (20)
(11 g (3s(e)) D3
— R q-2
S yﬂ(“"))) AL - A3 ()
- §0q V3 tO 2

+ G(1T4([o - T([o))) - G(I3(fo - T<lo)))]

_ (g =1 1 y3(z) | LG (ay(ry = t(20))) = Gas(ry — v(19)))]

(1 =1 ¢, (y3(29)) 17)2
203

which is a contradiction. Hence HLIHXJ u(t)<<0. Similarly, exchanging the role of x5 and x,, we can show that
(€00, T

max u (t) = 0. This implies that «(z) = 0. Therefore, the problem (4) has at most one solution. The proof
t ), T

of Theorem 1 is now complete.

3 Application

As an application, we consider the following example:

COS(IOOt)) 1

2 (0) 4 x,(t - 3 msm(lOOt)
+1 2 (¢ _cos 3 .
x, (1t 3. ) 10051n(100t)
sin(1002)
Corresponding to Theorem 1, we have p = 3,F(x) = 2> = 21+ 23,G(x) = — x,e(t) = 3
msin(lOOZ)
( 7’
~ cos(100z) d B , A AR 3 L. S o
and z(¢) = T T— thendtVF(x(t)) = Ax'(¢t) = (0 o) 2, b q = T = 50° [ =m; =a=
c=1,my=5,7=2, my =2, and
| T lel} Tlel
(2T)5(y—e°2>§ + T2 my++2al] VTlely + T2 e lya~0.2417 < 1.
ml()’—«/zal) }’—«/Zal
600.‘(10'6 I 0 S N i [T :v‘r’
s i : ; 3 ' : ‘ :
(_,G} R j: et
0 ke
200 |~ :
] ] ] ] ] i |

1.50 1.52 i.54 1.56 1.58 1.60 1.62 1.64

Time t

Figure 1. Example with time-varying delay
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T
50
numerical simulation. By using MATLAB(R2013a) toolkit: , which can be used to solve time-varying delay

Hence, by using Theorem 1, we see that (21) has at least - periodic solution, which can also be illustrated by

differential equations, (21) is simulated on tspan=1[1.5, 1.65] with Figure 1: Example with time-varying
delayhistory= [0, 0]. It can be found from Figure 1 that the equation admits one periodic solution with

T

50°

periodicity 0.0628, which is around Therefore, the results achieved in this paper are significant.
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